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な刃をつけて蕾状とした｡Head は 60°のアングルを与え､
刃は左右につけ､容易な剥離が可能です｡
また､尖頭を蕾状の形態とした｡その材質は､硬質ステンレス
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骨幅や高さの拡大を行い､インプラントの埋入と共に
フェイスリフトを行うものです｡ストレートの大小の
剥離子により､歯槽骨頂から口蓋･舌側の剥離を容易
に剥離し､骨面にフィットさせる形態です｡左右に分けられており操作が容易です。
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Abstract: Platelet concentrates should be quality-assured of purity and identity prior to clinical use.
Unlike for the liquid form of platelet-rich plasma, platelet counts cannot be directly determined in
solid fibrin clots and are instead calculated by subtracting the counts in other liquid or semi-clotted
fractions from those in whole blood samples. Having long suspected the validity of this method, we
herein examined the possible loss of platelets in the preparation process. Blood samples collected
from healthy male donors were immediately centrifuged for advanced platelet-rich fibrin (A-PRF)
and concentrated growth factors (CGF) according to recommended centrifugal protocols. Blood
cells in liquid and semi-clotted fractions were directly counted. Platelets aggregated on clot surfaces
were observed by scanning electron microscopy. A higher centrifugal force increased the numbers
of platelets and platelet aggregates in the liquid red blood cell fraction and the semi-clotted red
thrombus in the presence and absence of the anticoagulant, respectively. Nevertheless, the calculated
platelet counts in A-PRF/CGF preparations were much higher than expected, rendering the currently
accepted subtraction method inaccurate for determining platelet counts in fibrin clots. To ensure the
quality of solid types of platelet concentrates chairside in a timely manner, a simple and accurate
platelet-counting method should be developed immediately.

Keywords: fractionation; platelets; platelet-rich fibrin; concentrated growth factors; quality assurance;
regenerative therapy

1. Introduction

Ever since platelet-rich plasma (PRP) was reported to be effective for skeletal regeneration in
sinus floor elevation [1], PRP and its other subsequently developed derivatives, all of which can

Dent. J. 2017, 5, 7; doi:10.3390/dj5010007 www.mdpi.com/journal/dentistry
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be designated as “platelet concentrates”, have been widely applied as a source of growth factors
in various fields of regenerative therapy. In the fields of periodontology and maxillofacial surgery,
platelet-rich fibrin (PRF), a PRP derivative, has increasingly been used for treatment of hard and
soft tissues [2–5]. In terms of their preparation, the principle behind the fractionation of blood cell
components remains misunderstood and actual counts of the components may be overestimated.
Centrifugal fractionation is the most efficient method available for separating particles of different
specific gravities and sizes. However, because blood cells are not ideally spherical or mechanically stiff,
they cannot be clearly fractionated according to their specific gravity and size. Among most clinicians
involved in regenerative therapy, it has nevertheless been generally accepted that platelets are highly
concentrated in the buffy coat and are hardly present in other neighboring fractions, especially the red
blood cell (RBC) fraction, after centrifugal fractionation.

This misunderstanding is not limited to the efficiency of evaluating platelet concentrations
in liquid samples but can be expanded to the evaluation of platelet counts in self-clotted platelet
concentrates, such as advanced-platelet-rich fibrin (A-PRF) and concentrated growth factors (CGFs).
Since platelets have no nuclei, their counts cannot be determined by DNA contents. Therefore,
to determine platelet counts in fibrin clots, a “subtraction method” is currently applied for the
calculation [6–9]. According to this method, the platelet counts contained in fibrin clots are calculated
by subtracting those in the clot exudate, the supernatant serum, and the RBC fraction (i.e., the red
thrombus) from those in the starting whole blood sample. However, this method does not consider the
possibility of platelet contamination in the RBC fraction or the possible loss and damage of platelets
during processing for cell counting.

Therefore, we have long suspected the validity of this method. To assure the quality of platelet
concentrates, the purity and identity, at least, should be evaluated in each preparation prior to
clinical use, as described in the guidelines for major advanced therapeutic medicinal products [10,11].
To evaluate the possible contamination and loss of platelets in the preparation process in self-clotted
platelet concentrates, in this study, we examined the distribution of platelets and white blood cells
(WBCs) after fractionation by the centrifugal protocols recommended for their preparation. From the
results, we found that the subtraction method is not appropriate for the accurate quantification of
platelets in fibrin clots.

2. Results

The appearances of the samples in the presence of the anti-coagulant after fractionation under the
indicated centrifugal conditions are shown in Table 1. The buffy coat, a thin white line just above the
RBC fraction, was somewhat more clearly formed by high-speed centrifugation using a swing rotor,
which is recommended for the 1st spin of PRP preparation. In contrast, the low-speed centrifugation
recommended for A-PRF preparation could not clearly fractionate RBCs, which were, to some extent,
diffused into the upper plasma fraction.

The WBC distributions of the fractionated samples are shown in Figure 1. Whole blood samples
containing the anti-coagulant were centrifuged by the indicated protocols as in Table 1. WBC counts
(i.e., concentration) in the RBC fraction were significantly higher in the A-PRF/CGF-simulation models
than in the PRP/plasma rich in growth factors (PRGF)-simulation models, whereas those in the upper
fraction tended to be lower in the A-PRF/CGF-simulation models. The common factors of the A-PRF-
and CGF-simulation models were the use of glass tubes and an angle rotor, but not the centrifugal force.

32



Dent. J. 2017, 5, 7 3 of 11

Table 1. Centrifugal conditions for preparation of four platelet concentrate types and the
resulting fractions.

Centrifugation PRP PRGF A-PRF CGF

Force (g) 1100 580 200

692

547

592

855

Duration (min) 8 8 8

2

4

4

3

Appearance of ACD-A-contained
blood samples

 

Figure 1. WBC counts in the RBC fraction (a), upper plasma fraction (b), and whole blood sample (c).
Peripheral blood samples were collected in the presence of the anti-coagulant and centrifuged by the
individual centrifugation protocols. The upper fraction was collected above the line indicated in Table 1.
The remainder of the fractionated sample was used as the RBC fraction. N = 12–15. The asterisks
represent statistically significant difference (p < 0.05).
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Platelet distributions in the fractionated samples are shown in Figure 2. Whole blood samples
were fractionated as in Table 1. Platelet counts in the RBC fraction were relatively lower in the
PRGF-simulation model. Instead, those in the upper fraction were significantly higher in both the
PRGF- and the A-PRF-simulation models than that of the PRP- and CGF-simulation models. Both the
PRGF- and A-PRF-simulation models adopted relatively low-speed centrifugation.

Figure 2. Platelet (PLT) counts in the RBC fraction (a), upper plasma fraction (b), and whole blood
sample (c). Peripheral blood samples were collected in the presence of the anti-coagulant and
centrifuged by the individual centrifugation protocols. The upper fraction was collected above the
line indicated in Table 1. The rest of the fractionated sample was used as the RBC fraction. N = 12–15.
The asterisks represent statistically significant difference (p < 0.05).

To demonstrate similarity, WBC and platelet distributions in the self-clotted A-PRF/CGF
preparations were examined. As shown in Figure 3, in the A-PRF/CGF prepared from the blood
samples collected in the absence of the anti-coagulant, both apparent WBC and platelet counts in
the sum of the RBC and exudate fractions were substantially lower than those in the whole blood
samples. As a result, the calculated WBC and platelet counts in the clotted A-PRF/CGF fractions were
extraordinarily higher than those in the other fractions. These findings indicate that, unlike those in the
upper fractions obtained in the presence of the anti-coagulant, both WBCs and platelets are evaluated
to be concentrated predominantly in the A-PRF/CGF clots by the subtraction method according to the
Formula (1) described in the Materials and Methods section.

To detect platelets in the red thrombus, the upper region of the red thrombus, indicated by the
yellow dot square that is approximately 2 mm below the cutting edge in the upper left panel of Figure 4,
was dissected and washed three times with PBS to remove RBCs loosely trapped by fibrin meshwork
of the clot. Platelet aggregation in the upper region of the red thrombus is shown in the lower panel of
Figure 4. In contrast to RBCs, WBCs and platelets seemed to tightly attach to fibrin fibers, and platelet
aggregates were found almost everywhere on the surface of this region.
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Figure 3. WBC (a,c) and platelet (PLT) counts (b,d) in the A-PRF (a,b) and CGF preparations (c,d).
Peripheral blood samples were collected into glass tubes in the absence of the anti-coagulant and
centrifuged by the individual centrifugation protocols. The freshly formed fibrin clots were withdrawn
and dissected from the RBC clots. The resulting A-PRF/CGF preparations were compressed to collect
the exudate fractions, whereas the RBC clots were minced and gently combined with the liquid form of
RBC fraction. WBC and platelet counts were determined in the whole samples, A-PRF/CGF exudate
fraction, and RBC fractions. Calculated WBC and platelet counts in the A-PRF/CGF preparations,
which were calculated by the subtraction method, were substantially greater than that of the other
fractions. N = 10. * The exudate fraction also included a small volume of the acellular serum fraction.
** Sum of these fractions corresponds to the upper plasma fraction shown in Table 1.

The possible loss of platelets during collection and centrifugation was then examined. The number
of WBCs and platelets that tightly adhered to the inside wall of the glass tubes is shown in Figure 5.
In the glass tubes recommended for A-PRF preparations (A-PRF+®), as well as in plastic tubes
(Neotube®) (data not shown), washing with PBS three times thoroughly removed almost all of the
potentially attached WBCs and platelets. In contrast, a significant number of WBCs and platelets
were detected in the glass tubes usually used for the preparation of CGF (Vacutainer tube®). These
findings indicate that, possibly because of insufficient or absent surface siliconization or other coating,
particular types of glass tubes, such as the Vacutainer tube®, allow WBCs and platelets to tightly
adhere to their inside walls along with a more efficient induction of clotting.

To confirm this observation, the basic ability of platelet’s adhesion to plastic and glass labware
and RBC was examined using SEM. As shown in Figure 6, platelets adhered to polystyrene culture
dishes and glass coverslips within 10 min. Some platelets emitted pseudopodia, whereas others were
spread to form flatten disks. In contrast, in the lid of a plastic culture dish that is not modified for better
cell affinity, most platelets appeared in a resting state. Furthermore, in the presence of RBCs, some
platelets were found to attach to RBCs by their pseudopodia, as indicated by the dotted-line circle.
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Figure 4. (a) Appearance of the A-PRF clot prepared using a centrifuge equipped with an angle
rotor and the recommended glass tube. (b) The A-PRF preparation with a small portion of the red
thrombus was prepared by scrapping off most of the red thrombus. (c) The region indicated by
the yellow dot-square was subjected to examination by Scanning Electron Microscopy (SEM). In the
CGF preparation, the red thrombus was usually shorter than that of the A-PRF preparation. SEM
observations of aggregated platelets in the upper region of the RBC clot formed just below A-PRF
preparations. Similar findings were obtained in the preparation of CGF. Bar = 10 μm.

Figure 5. WBC (a) and platelet counts (b) on the inside wall of two types of glass tubes. After the
A-PRF/CGF clots prepared in the absence of the anti-coagulant were removed, the inside of the tubes
were washed thoroughly. WBCs and platelets were enzymatically detached for counting. N = 8
(A-PRF+®) or 12 (Vacutainer tube®).
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Figure 6. SEM observations of platelets on cell culture wares in the absence or the presence of
RBCs. Washed platelets suspended in Hepes–Tyrode solution were placed on plastic dishes (a),
hydrophobic lids of plastic dishes (b) or glass coverslips (c) and incubated for 10 min at 37 ◦C.
As above, RBC-contaminated platelet suspensions were plated on the coverslip and incubated (d). Data
is representative of three independent experiments. Bar = 10 μm.

3. Discussion

In general, as the centrifugal force increases, the volume of the RBC fraction becomes smaller,
whereas that of the upper fraction becomes larger. It should be noted that this phenomenon by itself
provides the background influencing blood cell counts, i.e., blood cell concentration, in each fraction.
Under these conditions, WBC counts did not appear to be significantly influenced by the centrifugal
force. Centrifugation using an angle rotor and glass tubes, regardless of centrifugal force, significantly
increased WBC counts in the RBC fraction, whereas the WBC counts in the upper plasma fraction
were decreased. In contrast, platelet counts were apparently influenced by centrifugal force; they were
increased in the upper plasma fraction by low speed centrifugation, whereas those in the RBC fraction
were decreased.

The main purpose of this study was to validate the currently accepted method of determining
platelet counts in fibrin clots. The current method involves subtracting the platelet counts in the
RBC, supernatant “acellular” serum, and A-PRF/CGF exudate fractions from those in the whole
blood sample [6–9]. However, given that platelets easily aggregate upon activation and adhere to
glass/plastic/metal surfaces, we have suspected that platelet counts can be determined accurately by
cell counting in the liquid/semi-clotted fractions after multiple steps and subsequent calculation.

In this study, we demonstrated that platelets easily and rapidly attach to both glass and plastic
surface optimized for cell adhesion. However, platelets appeared not to attach to hydrophobic plastic
surface. Judging from the disclosed manufacturers’ information and research investigators’ data [12],
it is thought that the inside wall of blood collection tubes is generally, but not invariably, coated with
silicon or similar agents to prevent cell adhesion. Therefore, possible platelet adhesion to the inside
wall of the tube may be low and insignificant. On the other hand, loss by platelet adhesion to the
stainless-steel compression device or dry gauze and damage during compression to squeeze exudates
should be considered as demonstrated in the previous study [13].

However, we would indicate that the contamination of platelets in the RBC fraction, i.e., the red
thrombus is the major factor causing miscalculation of platelet counts. The scheme of migration of
major blood components during centrifugation is illustrated in Figure 7. Owing to their deformability
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and Fe2+-dependent high specific gravity, although smaller in size than large WBCs, RBCs spin-down
faster. Specific binding and mechanical interaction, to some extent, cause RBCs to bring platelets
into the RBC fractions, as demonstrated in previous studies [14,15]. WBCs and platelets spin-down
essentially depending on their size. However, if aggregated, platelets would spin-down faster than
WBCs. Conversely, the fibrin clot captures blood cells, especially platelets and WBCs, and tends to rise
to the upper surface by buoyant force. These reactions are synchronized to form A-PRF/CGF clots.

Figure 7. Scheme of migration of major blood components during centrifugation.

To release possibly contaminating platelets and WBCs and determine their counts more accurately,
we did mince the red thrombus using scissors; however, the resulting platelet counts were much lower
than those in the RBC fraction in the presence of the anti-coagulant. Taken together with the finding
that platelet aggregation was actually detected in the red thrombus, it should be noted that a significant
number of platelets is included in the red thrombus and isolated from subsequent calculation.

As for possible alternatives, the measurement of PDGF, a major growth factor produced in
platelets, may provide data that enables estimation of platelet counts. However, because the ELISA
method is time-consuming, the measurement of PDGF is not appropriate for quality assurance of
A-PRF/CGF preparations prior to clinical use in case of on-site preparation. Therefore, other accurate
methods that enable us to directly count platelets should be developed to assure the quality of
A-PRF/CGF preparations.

4. Materials and Methods

4.1. PRP and PRGF Preparation

In a previous article [16], we literally compared PRP and other PRP derivatives and concisely
described the difference of their characteristics.

As previously described [17–19], blood samples (~9.0 mL) were collected in the presence of acid
citrate dextrose solution-A formulation (ACD-A; Terumo, Tokyo, Japan), an anti-coagulant, using
plastic vacuum blood collection tubes (Neotube®; NIPRO, Osaka, Japan) equipped with 21-gauge
needles from healthy, non-smoking volunteers (nine males; 28 to 71 years old). As listed in Table 1,
to obtain the PRP (1st spin of the double-centrifugation protocol) and PRGF preparations, the blood
samples were centrifuged using a KS-5000 centrifuge (Kubota, Tokyo, Japan) equipped with a swing
rotor at 2480 rpm (1100× g) and 1800 rpm (580× g), respectively, at 25 ◦C for 8 min.
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The study design and consent forms for all procedures performed within the study subjects were
approved by the ethical committee for human subjects at Niigata University School of Medicine in
accordance with the Helsinki Declaration of 1975 as revised in 2008.

4.2. Simulation of A-PRF and CGF Preparation in the Presence of the Anti-Coagulant

As described previously [13,20,21], blood samples (~9.0 mL) were collected with ACD-A,
using conventional glass vacuum blood collection tubes (Vacutainer tube®; Becton, Dickinson and
Company, Franklin Lakes, NJ, USA), from the same donors, and were immediately centrifuged using a
Spectrafuge 6C® centrifuge (Labnet International Inc., Edison, NJ, USA) equipped with an angle rotor
or a Medifuge® centrifugation system (Silfradent S. r. l., Santa Sofia, Italy) according to the protocol for
preparation of A-PRF or CGF, respectively. The centrifugal conditions are listed in Table 1.

4.3. Preparation of A-PRF and CGF in the Absence of the Anti-Coagulant

For preparation of the A-PRF and CGF, the recommended glass vacuum blood collection tubes,
A-PRF+® (Jiangxi Fenglin Medical Technology Co. Ltd., Fengcheng, China) and Vacutainer tube®

were used, respectively. Blood samples were collected without the anti-coagulant and immediately
centrifuged under the conditions listed in Table 1.

4.4. Determination of Blood Cell Counts

The number of blood cells in the initial whole blood and fractionated liquid samples were
determined using an automated hematology analyzer (pocH-100iV diff; Sysmex, Kobe, Japan). First,
RBCs, WBCs, and platelets were counted immediately after blood collection. Second, freshly prepared
fractions in the presence of the anti-coagulant were immediately evaluated for blood cell count.
To maximize the collection of platelets, the border between the RBC fraction and upper plasma fraction
was established as 1 mm below the apparent border between these fractions (see Table 1).

To determine WBC and platelet counts in the absence of the anti-coagulant, after centrifugation,
the supernatant serum fraction, if any, was collected first. Then, the resulting clot was removed, and the
semi-clotted, or loosely-clotted, red thrombus was scrapped off, using dental tweezers, from the upper
fibrin clot approximately 1 mm below the apparent border (Table 1, Figure 5). The resulting fibrin clot
was then compressed using a PRF compressor [13] to squeeze the fibrin clot exudate. The RBC clot
was minced with scissors and gently mixed by inverting the tube several times. Each fraction was
subjected to cell counting using the hematology analyzer. Platelet and WBC counts in the fibrin clot
were determined by subtracting those counts in the RBC, supernatant serum, and A-PRF/CGF exudate
fractions from those counts in the anti-coagulant-free whole blood sample, as calculated according to
the following Formula (1).

(PLTs/WBCs in fully clotted A-PRF/CGF preparations) = (PLTs/WBCs in liquid WB) −
[(PLT/WBCs in semi-clotted RBC fraction) + (PLTs/WBCs in liquid serum) +

(PLTs/WBCs in liquid exudate fraction)],
(1)

To determine the numbers of WBCs and platelets attached to the inside wall of the tubes, after
removing the clots and other liquid fractions, the tube was washed thoroughly with PBS three times,
and tightly adherent WBCs and platelets were detached with 0.05% trypsin plus 0.53 mM EDTA
(Wako Pure Chemicals, Osaka, Japan) with gentle agitation for 5 min. Cell suspensions were directly
subjected to cell counting.

4.5. Scanning Electron Microscopy (SEM)

To detect platelets in the upper region of the red thrombus, the region below the border, which is
indicated by a yellow dot-square in Figure 4, was dissected, washed in PBS three times, fixed with
2.5% glutaraldehyde, dehydrated with a series of ethanol and t-butanol washes, freeze-dried, and then
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examined by SEM (TM-1000, Hitachi, Tokyo, Japan) with an accelerating voltage of 15 kV, as described
previously [22]. Aggregated platelets were microscopically examined, but not counted.

To observe platelet morphology on cell culture wares, the PRP was prepared as described
previously [17,23], and the platelets were washed with a 10 mM Hepes–Tyrode buffer (pH 7.4),
suspended in a Hepes–Tyrode buffer containing 100 ng/mL prostaglandin E1 (Cayman Chemical,
Ann Arbor, MI, USA), and stored while gently stirring with a rotator at ambient temperature until
used, usually within 2 days. Platelets were placed on plastic dishes, lids of plastic dishes, or glass
coverslips for 10 min at 37 ◦C. Then, platelets were fixed and prepared for examination by SEM.

4.6. Statistical Analysis

The data are reported as the mean value ± standard deviation (S.D.). For multi-group
comparisons, statistical analyses were performed to compare the mean values by one-way analysis of
variance (ANOVA) (SigmaPlot 12.5; Systat Software, Inc., San Jose, CA, USA). When the data did not
pass the normality test, Dunn’s (for platelet counts in the RBC fraction) or Tukey’s multiple comparison
tests were performed. p-values < 0.05 were considered significant.

5. Conclusions

Significant numbers of platelets are present in the RBC portion of fractionated whole blood at
greater levels than expected, especially after centrifugation with a higher centrifugal force. In the
absence of the anti-coagulant, platelets are aggregated on fibrin meshwork of the red thrombus
and cannot be easily released for counting. Therefore, it is suggested that the current subtraction
method is not appropriate for the determination of platelet counts in clotted A-PRF/CGF preparations.
An accurate, direct, simplified method should be developed immediately to help the quality assurance
of A-PRF/CGF preparations for clinical use.
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Abstract

Background: In regenerative therapy, self-clotted platelet concentrates, such as platelet-rich fibrin (PRF), are
generally prepared on-site and are immediately used for treatment. If blood samples or prepared clots can be
preserved for several days, their clinical applicability will expand. Here, we prepared PRF from stored whole-blood
samples and examined their characteristics.

Methods: Blood samples were collected from non-smoking, healthy male donors (aged 27–67 years, N = 6), and
PRF clots were prepared immediately or after storage for 1–2 days. Fibrin fiber was examined by scanning electron
microscopy. Bioactivity was evaluated by means of a bioassay system involving human periosteal cells, whereas
PDGF-BB concentrations were determined by an enzyme-linked immunosorbent assay.

Results: Addition of optimal amounts of a 10% CaCl2 solution restored the coagulative ability of whole-blood
samples that contained an anticoagulant (acid citrate dextrose) and were stored for up to 2 days at ambient
temperature. In PRF clots prepared from the stored whole-blood samples, the thickness and cross-links of fibrin
fibers were almost identical to those of freshly prepared PRF clots. PDGF-BB concentrations in the PRF extract were
significantly lower in stored whole-blood samples than in fresh samples; however, both extracts had similar
stimulatory effects on periosteal-cell proliferation.

Conclusions: Quality of PRF clots prepared from stored whole-blood samples is not reduced significantly and can
be ensured for use in regenerative therapy. Therefore, the proposed method enables a more flexible treatment
schedule and choice of a more suitable platelet concentrate immediately before treatment, not after blood
collection.

Keywords: Platelet-rich fibrin, Coagulation, Fibrin fiber, Anticoagulant, Calcium chloride

Background
Blood preservation is generally and widely used in the
fields of blood transfusion and surgery for either autolo-
gous or allogeneic blood [1–3]. In case of small lots of
blood-derived materials used in regenerative therapy,
such as platelet concentrates, it is generally accepted
that autologous blood samples should be collected on-
site and immediately centrifuged for processing [4].
Accordingly, it is officially recommended to use thus
prepared materials immediately. The advantages of this

preparation protocol are the zero cost of preservation
and no risk of degradation and contamination.
In Niigata University Hospital, when relatively severe

surgical operations (e.g., large bone defects that require
hospitalization for alveolar ridge augmentation and sinus
floor elevation) are planned, relatively large volumes of
blood samples are usually collected the day before the
operation, and platelet-rich plasma (PRP) is prepared
and stored at ambient temperature until use [5]. Never-
theless, there are no established methods for preparation
of self-clotted platelet concentrates from stored whole-
blood (WB) samples. This may be another reason why
platelet-rich fibrin (PRF) should be prepared on-site and
used immediately.
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On the other hand, if PRF can be prepared from stored
WB samples on the next day or later without significant
reduction in the bioactivity, clinical applications of PRF
will expand. In this study, we developed a method for
preparation of PRF from stored WB samples by adding
CaCl2 and evaluated the quality in terms of suitability
for regenerative therapy. As a result, we successfully vali-
dated the method and ensured the quality of PRF pre-
pared from stored WB samples.

Methods
Blood collection, preservation, and PRF preparation
The study design and consent forms for all proce-
dures performed on the study subjects were ap-
proved by the ethics committee for human subjects
at Niigata University School of Medicine in accord-
ance with the Helsinki Declaration of 1975 as revised
in 2008.

With informed consent, blood samples (~9.0 mL per
tube) were collected from six non-smoking, healthy,
male volunteers (27 to 67 years old) using 21-gauge nee-
dles equipped with conventional vacuum plain glass tube
(Plain BD Vacutainer Tube; Becton, Dickinson and
Company, Franklin Lakes, NJ, USA) as described previ-
ously [6–8]. For preparation of control PRF by the con-
ventional method, the anticoagulant was not added.
Blood samples were immediately centrifuged or stored
by gentle mixing using a tube rotator at ambient
temperature (18–22 °C).
The blood samples collected with the anticoagulant

and stored for up to 2 days were centrifuged by means
of a Medifuge centrifugation system (Silfradent S.r.l.,
Santa Sofia, Italy). After elimination of the red blood cell
fractions, the resulting PRF clots, more specifically
termed as concentrated growth factors (CGF) [9], were
stored at −80 °C until measurement of growth factor
concentration.

Fig. 1 Glucose levels (a), calcium levels (b), and pH (c) of stored WB samples. Supernatant serum fractions were examined. Plasma fractions
prepared by quick centrifugation were used to determine calcium levels in fresh and stored WB samples that were not added CaCl2. N = 6
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For preparation of platelet-poor plasma (PPP), blood
samples (~9.0 mL) were collected from the same volun-
teers by means of plastic vacuum blood collection tubes
(Neotube®; NIPRO, Osaka, Japan) equipped with 21-
gauge needles, in the presence of 1.0 mL acid citrate
dextrose solution-A formulation (ACD-A; Terumo,
Tokyo, Japan), an anticoagulant [8, 10]. The blood sam-
ples were centrifuged on a KS-5000 centrifuge (Kubota,
Tokyo, Japan) equipped with a swing rotor at 1700 rpm
(530g) and 3000 rpm (1660g) for the first and second
spin (8 min), respectively. The resulting supernatant
fractions were collected as PPP preparations. To form fi-
brin clots, bovine thrombin (Liquid Thrombin
MOCHIDA softbottle, Mochida Pharmaceutical Co.,
Ltd., Tokyo, Japan) was added to PPP at a final volume
percentage of 2.5%.

Determination of glucose, calcium, and pH
WB samples were quickly centrifuged at 1500 rpm for
3 min to prepare plasma fraction, which were subjected
to determine total free calcium levels using a commer-
cial kit based on MXB method (Calcium E-test WAKO;
Wako Pure Chemicals, Osaka, Japan).
Stored WB samples were then mixed intermittently

with 200 μL (20 μL × 10 times) of 10% CaCl2 solution
and centrifuged by a Medifuge centrifugation system
to prepare PRF. When lower amounts of CaCl2 were
added, PRF clots were less reproducibly prepared.
When higher amounts of CaCl2 were added intermit-
tently, or when the optimal amount of CaCl2 were
added at once, PRF clots were never prepared
(Kawase, unpublished observations).
The supernatant serum fractions were subjected to de-

termine calcium and glucose levels as described above
and using a commercial kit based on GOD method
(Glucose CII-test WAKO; Wako Pure Chemicals). The
serum fractions were also used to determine pH levels
by pH indicators (MColorHast; EMD Millipore Corp.,
Billerica, MA, USA).

A bioassay on human periosteal cells
The frozen PRF samples were minced with scissors and
homogenized using a disposable homogenizer (Bio-
Masher II, Nippi, Tokyo, Japan). After high-speed centri-
fugation (7340g), supernatants (PRF extracts) were
collected and used for the bioassay described below and
for measurement of growth factor levels.
Because alveolar periosteum strongly contributes to

regeneration of periodontal skeletal tissue [11], we used
human alveolar bone-derived periosteal cells for evalu-
ation of the potency and efficacy of PRF preparations.
The periosteal cells were obtained and expanded as de-
scribed elsewhere [8, 12]. With informed consent,

human periosteum tissue segments were aseptically ex-
cised from the periodontal tissue on the healthy buccal
side of the retromolar region of the mandibles of two
non-smoking female volunteers (age = 19 and 29). Small
periosteum pieces were expanded to form multilayered
cellular periosteal sheets (∅ 30–40 mm), and then these
sheets were enzymatically digested with 0.05% trypsin
plus 0.52 mM EDTA (Invitrogen, Carlsbad, CA, USA) to
release single cells. After expansion in monolayer cul-
tures, the cells were seeded at a density of 0.4 × 104 per
well in 24-well plates and treated with PRF extracts (0,
0.5, 1, 2, or 4%) for 72 h in DMEM containing 1% of
fetal bovine serum (Invitrogen, Carlsbad, CA, USA). Six
different lots of PRF extracts were used for each ex-
periment. At the end of the incubation periods, the
cells were harvested using 0.05% trypsin plus
0.53 mM EDTA and immediately counted on an au-
tomated cell counter (Moxi-z; ORLFO Technologies,
Ketchum, ID, USA) (N = 6) [13].

Fig. 2 Appearance of PRF clots prepared from WB samples stored
for 2 days. These observations are representative of WB samples
obtained from four donors
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Quantification of a growth factor by an enzyme-linked
immunosorbent assay (ELISA)
PRF extracts prepared as described above were subjected
to measurement of PDGF-BB levels using the Human
PDGF-BB Quantikine ELISA Kit (R&D Systems, Inc.,
Minneapolis, MN, USA) as described previously [8].

Scanning electron microscopy (SEM)
The PRF clots that were compressed in a stainless-steel
compressor were fixed with 2.5% neutralized glutaralde-
hyde, dehydrated with a series of ethanol solutions and
t-butanol, freeze-dried, and then examined under a scan-
ning electron microscope (TM-1000, Hitachi, Tokyo,
Japan) with an accelerating voltage of 15 kV, as described
elsewhere [7, 14].

Statistical analysis
The data were expressed as mean ± standard deviation
(SD). For multigroup comparisons, statistical analyses
were conducted to compare the mean values by one-way
analysis of variance (ANOVA) followed by Tukey’s
multiple-comparison test (SigmaPlot 12.5; Systat Soft-
ware, Inc., San Jose, CA, USA). Differences with P values
<0.05 were considered significant.

Results
Glucose and calcium contents and pH of WB or serum
samples after centrifugation are shown in Fig. 1. Because

glucose is contained in the ACD-A solution, glucose
levels in the stored WB and serum samples (see Fig. 4c)
after centrifugation were significantly greater than those
of freshly collected WB samples. Total free calcium
levels, including calcium chelated by citrate, in WB sam-
ples decreased significantly during storage and were sig-
nificantly increased by addition of a 10% CaCl2 solution.
The pH levels of freshly collected WB samples were
6.0–6.5, and similar pH was observed in stored WB sam-
ples. Addition of the ACD-A solution (~10%) did not
significantly decrease the pH of the stored WB samples.
For reference, pH of ACD-A solution was 4.5–5.0.
The appearance of PRF clots prepared from freshly

collected WB samples and WB samples stored for 2 days
are shown in Fig. 2. There were no visual differences be-
tween these two PRF preparations. Microstructure of fi-
brin clots formed from fresh and 2-day-old WB samples
is shown in Fig. 3. As for thickness and cross-links of fi-
brin fibers, no substantial differences were observed. For
reference, fibrin clots that were prepared from PPP and
bovine thrombin were composed of apparently thinner
fibrin fibers as compared with PRF clots from either
fresh or stored WB samples.
The biological activity was tested on human periosteal

cells. The effects of PRF extracts on the cell proliferation
are shown in Fig. 4a. PRF extracts (0–4%) prepared from
fresh, 1-day-old, and 2-day-old WB samples exerted
similar stimulatory effects on the proliferation of

Fig. 3 SEM examination of fibrin fibers formed in self-clotted PRF and thrombin-stimulated PPP clots. PRF was prepared from fresh and 2-day-old
WB samples. Similar observations were obtained from WB samples collected from three other donors. Scale bars = 10 μm
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periosteal cells. PDGF-BB concentrations in PRF extracts
prepared from fresh and stored WB samples are shown
in Fig. 4b. PRF extracts and the supernatant serum frac-
tion (see Fig. 4c) were subjected to measurement of
PDGF-BB levels. The concentration of this representa-
tive growth factor of platelet concentrates [4] was signifi-
cantly reduced in PRF extracts by storage. In contrast,
PDGF-BB levels noticeably (but not significantly) in-
creased in the supernatants.

Discussion
Platelet preservation is restricted to 3 and 5 days in Japan
and worldwide, respectively. This limit is based on the fact
that platelets are sensitive to changes in temperature and
pH: when samples are stored at 2 to 6 °C, platelets become

unsuitable for production of platelet concentrates [3].
Preservation of platelet concentrates results in a drop of
pH below 6.0 depending on the platelet count [15], and
pH below 6.2 correlates with decreased in vivo efficacy of
platelets [16]. Furthermore, it was recently demonstrated
that growth factors in PRP degrade in the course of stor-
age at 22 °C [17].
On the other hand, in general, WB can be stored in

the presence of ACD or citrate phosphate and dextrose
(CPD) at room temperature for a relatively long period
(3 weeks or longer) before it is processed into blood
components [1]. The WB storage has also been sup-
ported by recent developments in oxygen-permeable
plastic bags. Nevertheless, out of concern about bacterial
contamination, the maximal storage period is restricted

Fig. 4 Bioactivities and PDGF-BB concentrations in PRF extracts and the supernatant serum fraction. a PRF extracts were added to periosteal cell
cultures and incubated for 3 days to evaluate their effects on cell proliferation. No significant differences were observed among three groups. b
PRF extracts were subjected to measurement of PDGF-BB levels using an ELISA kit. No significant differences were observed in the supernatant
among three groups. N = 6. c Representative localization of supernatant serum fraction of PRF preparation just after centrifugation
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to 8 h in some countries [3]. To minimize and prevent
bacterial proliferation, it is recommended to maintain
white blood cells in WB samples during the initial 16 to
20 h of storage to digest bacteria during storage [18, 19].
Here, it is worth discussing which functional states of

platelets are expected to be maintained during storage
for subsequent preparation of platelet concentrates (to
be used for regenerative therapy). There is no doubt that
the functional states observed in freshly isolated platelets
are the best for preparation of platelet concentrates and
for their best clinical performance. Nevertheless, given
that platelet concentrates are expected to provide signifi-
cant amounts of growth factors and fibrin(ogen) at im-
plantation sites, stored platelets are not necessarily
expected to function as fully as fresh ones (e.g., in terms
of aggregation). Rather, stored platelets are expected not
to lose growth factors during the storage period, while
coagulation factors, especially those involved in the en-
dogenous coagulation cascade, should maintain their ac-
tivities to convert and polymerize fibrinogen to form
well cross-linked fibrin fibers.
Considering the current status of clinical use of platelet

concentrates in the fields of periodontology and oral sur-
gery, in this study, we used 10-mL glass tubes that are not
oxygen-permeable instead of oxygen-permeable plastic
bags for storage of large volumes of WB or platelets. We
advanced a working hypothesis that the storage of WB
samples in glass tubes would result in a more rapid and
substantial pH drop and inactivation of several enzymes
involved in coagulation. This study revealed that addition
of an optimal amount of a CaCl2 solution successfully re-
stored the coagulation ability of the anticoagulant-
supplemented WB samples. The fibrin fibers prepared
from the stored WB samples were almost identical to
those of fresh WB samples. PDGF-BB concentrations were
significantly lower in PRF extracts prepared from stored
WB samples than in those of fresh WB samples. This ef-
fect can be explained by a growth factor release from plate-
lets after stimulation by calcium ions or maybe (less likely)
by degradation of PDGF-BB. Nonetheless, the bioactivities
did not significantly worsen during the short storage.
In general, autologous platelet concentrates are prepared

and immediately used for regenerative therapy in dental
clinics at present. Our method should expand the clinical
applicability of platelet concentrates, especially PRF prepa-
rations, and make the treatment schedule more flexible.

Conclusions
The self-clotted types of platelet concentrates (PRF) can
be prepared from ACD-containing stored WB by
addition of CaCl2 without a significant reduction in their
bioactivity and without other specific reagents or de-
vices. This approach should contribute to dissemination
of PRF therapy.
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Abstract

Background: Fibrin clot membranes prepared from advanced platelet-rich fibrin (A-PRF) or concentrated growth
factors (CGF), despite their relatively rapid biodegradability, have been used as bioactive barrier membranes for alveolar
bone tissue regeneration. As the membranes degrade, it is thought that the growth factors are gradually released.
However, the mechanical and degradable properties of these membranes have not well been characterized. The
purpose of this study was to mechanically and chemically characterize these membranes.

Methods: A-PRF and CGF clots were prepared from blood samples collected from non-smoking, healthy donors and
were compressed to form 1-mm-thick membranes. Platelet-poor plasma-derived fibrin (PPTF) clots were prepared by
adding bovine thrombin to platelet-poor plasma. A tensile test was performed at the speed of 1 mm/min. Morphology
of the fibrin fibers was examined by SEM. A digestion test was performed in PBS containing trypsin and EDTA.

Results: In the tensile test, statistical difference was not observed in Young’s modulus, strain at break, or maximum
stress between A-PRF and CGF. In strain at break, PPTF was significantly weaker than CGF. Likewise, fibrin fiber thickness
and crosslink density of PPTF were less than those of other membranes, and PPTF degraded faster than others.

Conclusions: Although the centrifugal conditions are different, A-PRF and CGF are prepared by essentially identical
mechanisms. Therefore, it is conceivable that both membranes have similar mechanical and chemical properties. Only
PPTF, which was prepared by a different mechanism, was characterized as mechanically weaker and enzymatically
more degradable.

Keywords: Platelet-rich fibrin, Concentrated growth factors, Platelet-poor plasma, Young’s modulus, Fibrin fiber,
Degradability

Background
Platelet-rich fibrin (PRF), a self-clotted preparation of
platelet-concentrated, blood-derived biomaterials, is pre-
pared solely by contact activation of intrinsic coagulation
pathways through centrifugation without addition of co-
agulation factors [1, 2]. Therefore, the preparation proto-
col is drastically simplified, and the resulting clot can be
handled easily with forceps. PRF is further modified to

two types: A-PRF, an advanced type that is expected to
contain greater numbers of white blood cells [3] and
concentrated growth factors (CGF), which is prepared
under a facilitated intrinsic coagulation cascade [4].
Since these preparation protocols are similar and share
the same principle of clot formation, A-PRF and CGF
clots are not easy to differentiate either macroscopically
or microscopically.
In clinical settings, both A-PRF and CGF preparations

have been applied as barrier membranes and/or as carriers
of growth factors to facilitate wound healing and tissue
regeneration. However, their mechanical properties as
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barrier membranes have not been investigated sufficiently.
For example, there is no available evidence as to which
membrane is mechanically tougher. In addition, because
the fibrin membranes degrade gradually at the implant-
ation site in vivo, it is poorly understood how their mech-
anical properties change during the degradation process.
Degradability is also closely related to growth factor

release, a phenomenon that is a key parameter in the
efficacy at the implantation site. Recently, it has been
demonstrated that growth factors are concentrated in
A-PRF/CGF clots and released with time [5–10]. These
experimental systems simulated the initial phase of
growth factor release by simple diffusion; however, the
simulation experiments were performed using conven-
tional culture media in the absence of serum or prote-
ases, which is not an appropriate simulation system of
in vivo conditions. Therefore, it is apparent that growth
factor release by degradation of fibrin fibers [11] is not
well simulated. In the data obtained from our previous
[12] and preliminary studies, fibrin clots can be main-
tained without substantial degradation under similar
protease-free conditions for longer than a week. How-
ever, clinicians have frequently claimed based on their
clinical experiences that fibrin clots applied to surgical
sites, e.g., socket after tooth extraction, are almost com-
pletely degraded within a week or two. This observation
is supported by several clinical review articles [13, 14].
In this study, we hypothesized that the mechanical

properties of the fibrin membrane are closely related to its
degradability. We compared these characteristics among
A-PRF, CGF, and PPTF membranes through tensile and
digestion tests.

Methods
Preparation of A-PRF and CGF clots
Blood samples were collected from four non-smoking,
healthy, male volunteers with ages ranging from 27 to
56 years. Although having lifestyle-related diseases and
receiving medication, these donors had no hindrance in
daily life. The study design and consent forms for all
procedures performed with the study subjects were ap-
proved by the ethical committee for human subjects at
Niigata University School of Medicine in accordance with
the Helsinki Declaration of 1975 as revised in 2008.
As described previously [6, 15, 16], blood samples

(~9.0 mL) collected without anticoagulants using vac-
uum plain glass tubes (A-PRF+; Jiangxi Fenglin Medical
Technology Co. Ltd., Fengcheng, China) or conven-
tional vacuum plain glass tube (Plain BD Vacutainer
Tube; Becton, Dickinson and Company, Franklin Lakes,
NJ, USA) from the same donors were immediately cen-
trifuged by an A-PRF centrifugation system (A-PRF12;
DRAGON LABORATORY Instruments Ltd., Beijing,
China) or a Medifuge centrifugation system (Silfradent

S. r. l., Santa Sofia, Italy). After eliminating the red
blood cell (RBC) fractions, the resulting A-PRF and
CGF clots were compressed using a stainless-steel com-
pression device and preserved between wet gauze until
mechanical testing (usually for a maximum of 3 h).

Preparation of PPP clots
To prepare platelet-poor plasma (PPP), peripheral blood
(~9.0 mL) was collected using syringes containing A-
formulation of acid-citrate-dextrose (ACD-A) (1.0 mL;
Terumo, Tokyo, Japan) and immediately fractionated by
the conventional double-spin method [17, 18]. The super-
natant was collected as the PPP fraction. To prepare fibrin
clots, bovine thrombin (Liquid Thrombin MOCHIDA
Softbottle, Mochida Pharmaceutical Co. Ltd., Tokyo,
Japan) was added to the PPP at a final volume percentage
of 2.5% (v/v) at ambient temperature in glass chambers.
The resulting PPP clots, which is designated as platelet-
poor, thrombin-activated fibrin (PPTF), were compressed
and preserved between wet gauze until mechanical testing
(usually for a maximum of 3 h).

Determination of water content in fibrin clots
After excess amounts of exudate were quickly absorbed
by the dry gauze, wet weights of freshly prepared A-
PRF, CGF, and PPTF clots were measured using an
electric balance. After compression with the stainless
compressor, their weights were measured again. The
compressed clots were then dried by heating at 140 °C
for 30 min and were weighed in a pre-heated moisture
analyzer (MA35; Sartorius Corporate Administration
GmbH, Goettingen, Germany).

Mechanical testing
The mechanical properties of gel sheets were measured
at a stretching speed of 1 mm/min with a desktop uni-
versal testing machine (EZ test; Shimadzu, Kyoto, Japan),
of which maximum load cell capacity was 500 N under
standard ambient conditions at 25 ± 3 °C and 50 ± 25%
RH. The samples were gripped by clamps at each end
(using slip-proof rubber sheets to prevent slippage) such
that the initial apparent gauge length (the distance be-
tween clamp faces) was set to 10 mm for all the samples
tested.
Young’s modulus, maximum tensile strength, and ten-

sile strain at break were obtained from the stress-strain
plot. Stress was calculated by dividing the force by the
initial tissue cross-sectional area, assuming a rectangular
geometry (Table 1). The modulus for each sample was
determined from the slope of the stress-strain curve dur-
ing the apparent strain of 50–150% where the curve was
almost linear while the sample had a sag during the ap-
parent strain of 0–50%. The strain was recalculated to
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eliminate the sag when the Young’s modulus and the
maximum strain at break.
According to the definition in the Handbook of Polymer

Testing [19], “Young’s modulus” is the modulus of elasti-
city in tension and defined as ratio of stress difference to
the corresponding strain difference (stress/strain). In this
study, the initial elongation property (slope) was evaluated
to determine Young’s modulus. “tensile strain at break” is
defined as tensile strain at the tensile stress at break, if it
breaks without yielding. “Maximum tensile stress” sus-
tained by the test specimen during a tensile test represents
tensile strength.

Digestion test
A-PRF/CGF/PPTF clots (1 mm thick) were compressed in
the stainless-steel compressor [16] and were punched out
(φ8 mm) using a biopsy punch (Kai Corp., Tokyo, Japan).
After repeatedly rinsing the disks with PBS to eliminate as
much serum as possible, the disks were immersed into
4 mL of 0.05% trypsin plus 0.53 mM EDTA (Invitrogen,
Carlsbad, CA, USA) in a 35-mm dish inside a CO2 incu-
bator. Fibrin is well known to be specifically degraded by
plasmin in vivo; however, because it takes a long time
to determine degradation using plasmin in vitro [12]
and because fibrin could be degraded also by other pro-
teases in vivo, we used trypsin plus EDTA, which is
usually used in cell culture, in this study.
After pipetting the digestion solution, 50 μL of the

digestion solution was collected every 20 min and was
stored at −20 °C until protein measurement. Protein
levels, which can be considered primarily as levels of
digested fibrin fiber, were then determined by a BCA
protein assay kit (Takara Bio, Kusatsu, Japan). The pro-
tein levels at the time point when the initial fibrin disks
were completely digested overnight were evaluated at
100%.

Scanning electron microscopy (SEM)
The PRF clots that were compressed in a stainless-steel
compressor, were fixed with 2.5% neutralized glutaral-
dehyde, dehydrated with a series of ethanol solutions
and t-butanol, freeze-dried, and then were examined
under a scanning electron microscope (TM-1000; Hitachi,
Tokyo, Japan) with an accelerating voltage of 15 kV, as
described previously [16].

Statistical analysis
The data were expressed as mean ± standard deviation
(SD). For multi-group comparisons, statistical analyses
were conducted to compare the mean values by one-way
analysis of variance (ANOVA) followed by Dunn’s
multiple-comparison test (SigmaPlot 12.5; Systat Software,
Inc., San Jose, CA, USA). Differences with P values < 0.05
were considered significant.

Results
The main purpose of this study was to compare A-PRF
with CGF preparations to find possible differences in
mechanical properties. As shown in Table 1, the sizes of
A-PRF clots compressed to membranes were 8.6 ±
1.2 mm (W) × 27.5 ± 3.5 mm (L) and very similar to those
of CGF clots (8.4 ± 0.8 mm× 27.6 ± 2.5 mm). As reference,
PPTF membranes were also prepared by adding CaCl2 to
liquid PPP preparations using a molding glass chamber.
The size of PPP membranes prepared by adding thrombin,
designated PPTF in this study, was 8.3 ± 1.2 mm× 31.8 ±
2.1 mm. Furthermore, when subjected to the tensile test,
both membranes could be stretched two to four times
their original length. As shown in Table 2, the water con-
tent of A-PRF clots was very similar to that of CGF clots.
However, PPTF clots contained significantly less amounts
of water than both A-PRF and CGF clots.
Surface microstructures of various fibrin clots, includ-

ing A-PRF and CGF clots, were compared, as shown in
Fig. 1. Based on SEM examinations, CGF clots contained
thicker fibrin fibers than A-PRF clots. PPP clots pre-
pared by adding CaCl2 were composed mainly of rela-
tively thin fibers. In contrast, PPTF clots were easily
distinguishable from the other three clot types and were
composed of highly crosslinked fibers that were the thin-
nest observed.
Individual membrane types were examined by a tensile

test and were characterized by three parameters: (1)
Young’s modulus, (2) strain at break, and (3) maximum
stress in the stress-strain curves. As shown in Fig. 2, no sig-
nificant differences in both Young’s modulus and maximum
stress were observed among A-PRF, CGF, and PPTF
membranes. However, in strain at break, PPTF membranes
were significantly inferior to CGF membranes.
Degradability of individual membrane types was exam-

ined in PBS containing trypsin and EDTA. As shown in

Table 1 Similarity in size and stretching property of A-PRF and
CGF membranes

Size (W × L mm) Stretching (times longer) Number

A-PRF 8.6 ± 1.2 × 27.5 ± 3.5 2–4 9

CGF 8.4 ± 0.8 × 27.6 ± 2.5 2–4 9

PPTF 8.3 ± 1.2 × 31.8 ± 2.1 2–4 3

Table 2 Comparison of water content of A-PRF, CGF, and PPTF
clots

Wet weight (g) Dry weight (g) Water content (%)

A-PRF 1.905 ± 0.416 0.043 ± 0.014* 97.8 ± 0.7*

CGF 1.753 ± 0.302 0.035 ± 0.009* 98.0 ± 0.6*

PPTF 1.774 ± 0.287 0.066 ± 0.004 96.2 ± 0.7

N = 5
*P < 0.05 compared with PPTF
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Fig. 1 Surface microstructures of A-PRF, CGF, and fibrin clots prepared by PPP + CaCl2 and PPTF (fibrin clots prepared by PPP and thrombin). Similar
observations were obtained from other three independent blood samples. Scale bar = 10 μm. Note: the same magnification (×9000) was used in all
the SEM images shown here

Fig. 2 Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum
stress) of A-PRF, CGF, and PPTF membranes. N = 3–9
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Fig. 3, PPTF membranes degraded significantly faster
than A-PRF and CGF membranes. This disparity in de-
gradability was observed at 20 and 40 min.

Discussion
In this study, we found no apparent differences between
A-PRF and CGF clot microstructures, especially in fibrin
fiber thickness or crosslink density. However, in PPTF
clots, which were prepared through direct conversion of
fibrinogen by thrombin, fibrin fiber thickness and their
crosslink density were substantially thinner and higher,
respectively, than those of either A-PTF or CGF clots.
This finding was supported by the water content data,
which revealed that significantly less amounts of water
were contained in PPTF clots. These data are summa-
rized along with the centrifugal conditions in Table 3.
Since the ratio of surface area to volume is known to be

a significant factor for degradation of polymer material

[20], these structural characteristics can be correlated to
their degradability. As expected, we demonstrated that
PPTF membranes degraded faster than other self-clotted
fibrin membranes and A-PRF and CGF degradation rates
were almost identical. However, it has not yet been clari-
fied if those structural characteristics are correlated to
mechanical properties.
In the tensile test, we again found no significant differ-

ence in any parameters evaluated among A-PRF, CGF,
and PPTF membranes. However, in the strain at break,
PPTF membranes were broken by a significantly weaker
tensile force. The order of this parameter from high to
low was CGF ≈A-PRF > PPTF. As described above, the
order of degradability was PPTF > CGF ≈A-PRF, which
is the reverse of the mechanical strength. Despite higher
crosslink density, fibrin fibers formed in PPTF clots were
substantially thinner and therefore they are probably not
capable of bearing higher tensile forces. The manufac-
turer explains that the difference between PRF and CGF
is related to the centrifugation techniques; programmed
switching between acceleration and deceleration facili-
tates both conversion of fibrinogen to fibrin and their
polymerization more efficiently than centrifugation at
fixed speeds. However, as far as we examined, CGF is
identical to A-PRF in terms of mechanical and degrad-
able properties.
Growth factor release is a key function of these fibrin

clots for tissue regeneration. Our previous study [16]
demonstrated that CGF membranes compressed by the
stainless steel compression device contain significantly
higher levels of growth factors even after releasing ap-
proximately 85% of exudate. Repeated rinsing with PBS
failed to completely remove the growth factors from
CGF membranes. The rinsed CGF membranes retained
angiogenic effects in ex vivo and in vitro experimental
systems. Considered together, these data imply that sig-
nificant amounts of the growth factors are secured in
CGF membranes, specifically in fibrin fibers. Similar

Fig. 3 Enzymatic degradability of A-PRF, CGF, and PPTF membranes.
Each membrane disk (φ8 mm, 1 mm thick) was immersed in PBS
containing trypsin and incubated in a CO2 incubator. N = 4. The
asterisks represent significant differences (P < 0.05) compared
with A-PRF at the same time points

Table 3 Summaries of preparation procedures, relative mechanical, degradation, and related properties of A-PRF, CGF and PPTF

A-PRF CGF PPTF

Centrifugal conditions 198 g × 8 min 692 g × 2 mina

547 g × 4 min
692 g × 4 min
855 g × 3 min

580 g × 8 min (1st)b

1060 g × 8 min (2nd)

Anticoagulants None None ACD-A

Coagulation factors None None Thrombin

Mechanical strength Tough Tough Moderate

Serum retention High High Medium

Degradation Moderate Moderate Fast

Fibrin fibers Thickness Thick Thick Thin

Crosslink density Low Low High
aThe centrifugal force was automatically changed by the specific program of centrifuge
bPPP was prepared by the double-spin method
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functions were found in A-PRF and PPTF membranes.
Therefore, it is thought that two distinct mechanisms
are involved in controlled release of growth factors in
exudate-depleted fibrin membranes: growth factors
adsorbed to fibrin fibers and growth factors caged in
platelets aggregated on fibrin fibers.
The initial phase of growth factor release from fibrin

clots is mainly attributed to simple diffusion. In contrast,
the late phase, i.e., the delayed growth factor release, is
probably due to degradation of fibrin fibers and platelet
membranes. We think that these combined releasing
mechanisms determine how long the individual fibrin clot
types last for tissue regeneration. This complex process of
growth factor release from PRF (CGF) membranes should
be investigated more carefully by developing appropriate
experimental conditions.

Conclusions
In the mechanical parameters and degradability we tested,
CGF membranes were almost identical to A-PRF mem-
branes. In contrast, PPTF membranes were mechanically
weaker and highly degradable. Therefore, we conclude
that all of these fibrin membranes are tough enough to
serve as barrier membranes; however, we should pay at-
tention to their degradability and choose an appropriate
membrane type depending on the purpose of treatment
and the condition of wounds or bone defects.
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Abstract: The platelet-rich fibrin–like matrix (PRFM) is usually prepared onsite and immediately used
for regenerative therapy. Nonetheless, to meet the clinical necessity of preserving the PRFM without
quality deterioration, we developed a method for preparation of PRFMs from short-term-stored
whole blood (WB) samples. In this study, to evaluate the practical expiration date of storage, we
extended the storage time of WB samples from 2 to 7 days and assessed the quality of the resulting
PRFMs. WB samples collected with acid-citrate-dextrose were stored with gentle agitation at ambient
temperature. To prepare PRFMs, the stored WB samples were mixed with CaCl2 in glass tubes
and centrifuged. Fibrin fiber networks, CD41 and CD62P expression, and Platelet Derived Growth
Factor-BB (PDGF-BB) levels were examined by scanning electron microscopy (SEM), flow cytometry,
and an Enzyme-Linked ImmunoSorbent Assay (ELISA), respectively. Long-term storage had no
significant effect on either blood cell counts or platelet functions tested. The resulting PRFMs
were visually identical to freshly prepared ones. PDGF-BB levels did not markedly decrease in a
time-dependent manner. However, fibrin fibers gradually became thinner after storage. Although the
coagulation activity may diminish, we propose that PRFMs can be prepared—without evident loss of
quality—from WB samples stored for up to 7 days by our previously developed method.

Keywords: platelets; platelet-rich fibrin; platelet-derived growth factor; fibrin fiber; storage

1. Introduction

Among the various types of platelet concentrates, the platelet-rich fibrin-like matrix (PRFM) has
been increasingly used as the most convenient biomaterial for regenerative therapy in dentistry [1].
Moreover, this popularity is supported by its multiple functions as both a matrix and scaffold and its
higher capacity for tissue regeneration than platelet-rich plasma (PRP) [2,3]. When compared with
other platelet concentrate subtypes, PRFM is usually expected to be prepared onsite as per patients’
needs, and immediately used for regenerative therapy. In practice, however, due to a patient’s physical

Biomedicines 2017, 5, 57; doi:10.3390/biomedicines5030057 www.mdpi.com/journal/biomedicines
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condition or a doctor’s technical capabilities, PRP is extensively prepared on the day or just before a
surgical procedure.

In Japan, new regulations for regenerative medicine established in 2014 require all physicians and
dentists administering a regenerative therapy that involves a platelet concentrate to record and report
the preparation procedures and quality assessment data for PRFM preparations [4]. As a time-saving
measure, some physicians or dentists, mainly in private practice, outsource the PRFM preparation
process. Therefore, there is a need to develop an off-site PRFM preparation process.

Because anticoagulants, such as citrate and acid-citrate-dextrose (ACD), are added to whole
blood (WB) during collection, PRP can be prepared from stored blood and delivered the next day.
Even though some physicians or dentists intend to outsource PRFM preparation, due to a lack of
anticoagulants, PRFMs cannot be prepared off-site on the next day. Accordingly, another option is
to preserve their home-made PRFMs under appropriate conditions. However, there is no reliable
scientific evidence to support the safety and effectiveness of a preserved PRFM.

To circumvent this problem, in our previous study [5], we developed a technique for preparation
of PRFMs from WB samples stored short-term, and we validated their quality for use as a biomaterial
for regenerative therapy. In this previous study, however, we examined WB samples stored only for
up to 2 days. It is still unclear how long WB samples can be stored for PRFM preparation without
significant quality loss. In blood transfusion, platelet products can be stored for a maximum of 4–7 days,
depending on national guidelines and the type of product [6]. Therefore, it can be predicted that
platelets may not be useful for medical purposes after this expiry period. In this study, to evaluate
biological implications of the officially recommended period of storage for our purposes, we applied
our previously developed technique to WB samples stored for relatively long periods (≥5 days) and
assessed the quality of the resulting PRFMs.

To help readers correctly understand the identity of the fibrin matrix preparations used in this
study, we should emphasize the differences between our PRFM and Choukroun’s PRF: although
in a broad sense and judging by visual inspection, our PRFM is almost identical to Choukroun’s
original PRF prepared from freshly collected WB samples without anticoagulants, our PRFM may be
distinguished from original PRF by the use of both an anticoagulant and CaCl2 and the protocol for
concentrated growth factors (CGF) preparation in a narrow sense.

2. Experimental Section

2.1. Blood Collection, Preservation, and Platelet-Rich Fibrin–Like Matrix (PRFM) Preparation

The study design and consent forms for all procedures involving human participants were
approved by the ethics committee for human subjects at Niigata University School of Medicine in
accordance with the Helsinki Declaration of 1975 (revised in October 2008).

Blood samples (approximately 9.0 mL per tube) were collected from six nonsmoking healthy male
volunteers (age 32–68 years) using 21-gauge needles equipped with a conventional vacuum plain glass
tube (Plain BD Vacutainer Tube; Becton, Dickinson and Co., Franklin Lakes, NJ, USA) for immediate
PRFM preparation or with a vacuum plain plastic tube (Neotube; NIPRO, Osaka, Japan) for stored WB
samples as previously described [7–9].

For preparing a control PRFM by the conventional method, fresh WB samples were collected
into glass tubes in the absence of ACD-A (Terumo, Tokyo, Japan) and were immediately centrifuged
by means of a Medifuge centrifugation system (Silfradent S.R.L., Santa Sofia, Italy). This centrifuge
was designed to prepare CGF (which may be considered a member of the PRF family) and employs a
program that automatically changes the centrifugal speed as follows: 30”, acceleration; 2’, 2700 rpm
(600× g); 4’, 2400 rpm (500× g); 3’, 3000 rpm (800× g); and 36”, deceleration and stop [10].

For delayed preparation of PRFM, WB samples were collected into plastic tubes in the presence of
ACD-A and stored for up to 7 days at ambient temperatures (20–24 ◦C) with gentle agitation using a
tube rotary mixer (NRC-20R; Nissin, Tokyo, Japan). At various time points, the stored WB samples were
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transferred into glass tubes, warmed at 37 ◦C, intermittently mixed with 200 μL (20 μL × 10 times) of
a 10% CaCl2 solution and centrifuged on the Medifuge centrifugation system. After elimination of the
red blood cell (RBC) fractions by forceps, the resulting PRFM samples were immediately compressed
with a stainless-steel PRFM compression device (PRF stamper®; JMR Corp. Ltd., Niigata, Japan) [11]
and washed thrice with PBS for scanning electron microscopy (SEM) or stored without washing at
−80 ◦C until determination of PDGF-BB levels.

2.2. Measurement of Glucose and Ca2+ Levels and pH

Prior to Ca2+ addition, the stored WB samples were quickly centrifuged at 415× g for 3 min
to obtain the plasma fraction, which was used to determine total free Ca2+ levels by means of a
commercial kit based on the MXB method (Calcium E-test Wako; Wako Pure Chemicals, Osaka, Japan)
as described elsewhere [5].

For PRFM preparation, the supernatant serum fractions obtained after centrifugation were
subjected to analysis of Ca2+ levels as described above and to quantification of glucose with a
commercial kit based on the GOD method (Glucose CII Test Wako; Wako Pure Chemicals) [5].
The serum fractions were also subjected to measurement of pH with pH indicators (MColorHast; EMD
Millipore Corp., Billerica, MA, USA) [5].

2.3. Quantification of a Growth Factor by an Enzyme-Linked Immunosorbent Assay (ELISA)

PDGF-BB levels were measured in the PRFM extracts using the Human PDGF-BB Quantikine
ELISA Kit (R&D Systems, Inc., Minneapolis, MN, USA) as previously described [8,11,12]. In brief,
individual PRFM samples were minced and homogenized for 1 min with sample tube size disposable
homogenizers (BioMasher II; Nippi, Tokyo, Japan). After centrifugation, the resulting supernatants
were analyzed by an ELISA.

2.4. Determination of Blood Cell Counts

The total number of blood cells in WB samples and in fractionated liquid samples was determined
in the same types of sample tubes and an automated hematology analyzer (pocH-100iV Diff; Sysmex,
Kobe, Japan) [5,13]. RBCs, white blood cells (WBCs), and platelets were counted either immediately
after blood collection or after storage, but before centrifugation.

2.5. Flow-Cytometric (FCM) Analyses

The platelet fraction was isolated from WB samples by centrifugation (530× g, 10 min), washed
twice with PBS, and resuspended in PBS at a density of 1–2 × 108/mL. The platelets were incubated
with 10 mM adenosine 5’-diphosphate (ADP; Wako Pure Chemical, Osaka, Japan) or 0.1% CaCl2
(Wako) for 15 min at ambient temperature. To stop the reaction, an equal volume of a commercial
fixative, ThromboFix (Beckman-Coulter, Brea, CA, USA) was added to each platelet suspension
(100 μL) and incubated for 30 min. Platelets were then washed twice with PBS and probed with both a
phycoerythrin (PE)-conjugated mouse monoclonal anti-CD41 antibody and a fluorescein isothiocyanate
(FITC)-conjugated mouse monoclonal CD62P antibody (1:20) (BioLegend, San Diego, CA, USA) for
45 min at ambient temperature. After two washes with PBS, platelets were analyzed on a flow
cytometer (Cell Lab Quanta SC; Beckman-Coulter Inc., Brea, CA, USA) as previously described [14].
For isotype controls, mouse IgG1 (BioLegend) was employed.

2.6. Scanning Electron Microscopy

To examine the microstructure of fibrin fiber networks, PRFM samples were compressed, washed
thrice with PBS, and cut into small pieces. Then, the PRFM pieces were fixed with 2.5% glutaraldehyde,
dehydrated with a series of ethanol and t-butanol washes, freeze-dried, and finally examined by SEM
(TM-1000, Hitachi, Tokyo, Japan) with accelerating voltage 15 kV, as previously described [5,15].
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2.7. Evaluation of Platelet Surface Antigen Expression by an Immunofluorescence Assay

Platelet concentrates were prepared from stored WB samples, rinsed, and resuspended in PBS in
sample tubes. Platelets were then treated with CaCl2 at a final concentration of 0.1% and incubated for
15 min at ambient temperature. ADP (10 mM) served as a positive control [16]. After completion of the
required incubation time, the reaction was stopped by addition of ThromboFix (Beckman Coulter Inc.,
Brea, CA, USA). The platelets were washed twice and incubated with anti-human CD41 or CD62P
monoclonal antibodies (1:20; BioLegend, San Diego, CA, USA) (primary antibodies) for 40 min at
ambient temperature. Next, the platelets were again washed twice with PBS and were probed with a
secondary antibody, a goat anti-mouse IgG H&L antibody (an Alexa Flour® 555 conjugate; 1:50; Abcam,
Cambridge, MA, USA), for 30 min at ambient temperature. Finally, after subsequent PBS washes,
the platelets were mounted with an antifade mounting medium (Vectashield®; Vector Laboratories,
Burlingame, CA, USA), and CD41 and CD62P expression levels were examined under a fluorescence
microscope equipped with a cooled CCD camera (Nikon, Tokyo, Japan).

2.8. Statistical Analysis

The results are reported as mean ± standard deviation (SD). For multigroup comparisons,
statistical analyses were performed by one-way analysis of variance (ANOVA) (SigmaPlot 12.5; Systat
Software, Inc., San Jose, CA, USA) with Bonferroni’s post hoc test. Differences with p-values < 0.05
were considered statistically significant.

3. Results

3.1. Time-Dependent Changes in The Characteristics of Whole Blood Samples

WB samples were stored with gentle agitation at ambient temperature because they were collected
into plain plastic tubes and stored for up to 7 days. During this period, both the platelet and RBC
counts did not change significantly (Figure 1a,b). Additionally, WBC counts did not shift, but relative
percentages of WBC subtypes underwent marked alterations (Figure 1c,d). The percentages of small
and medium-size components of WBCs, such as lymphocytes, increased, whereas those of the large
components, such as granulocytes, decreased.

Figure 1. (a–c) Stable counts of platelets, red blood cells (RBCs), and white blood cells (WBCs) in stored
whole blood samples (n = 8); (d) A comparison of WBC components between fresh and 7-day-stored
WB samples. The data were calculated from an average of 8 samples. W-SCR: WBC small cell ratio,
W-MCR: WBC middle cell ratio, W-LCR: WBC large cell ratio.
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Platelets’ responses to stimulants were evaluated by comparing the expression of CD62P with that
of CD41 [17]. After storage for 2 days, CD41 expression was similar among all the samples, regardless
of the external stimuli (0.1% CaCl2 or 10 mM ADP for 15 min; Figure 2). In contrast, CD62P expression
levels were upregulated by the CaCl2 or ADP challenge. The 7-day storage duration did not alter
the platelet activation responses. CD62P expression levels were likewise increased by treatment with
similar concentrations of CaCl2 and ADP.

 

Figure 2. Immunofluorescent staining of CD41 and CD62P expressed in platelets isolated from 2-day-
or 7-day-stored WB samples. (a,d) Control resting platelets; (b,e) platelets stimulated by 0.1% CaCl2
for 15 min; and (c,f) platelets stimulated by 10 mM ADP for 15 min. The platelets were derived from
the same donor and were distributed with almost the same density in all the dishes (views).

Similar observations were made during quantitative FCM analysis (Figure 3). In terms of elevated
CD62P expression levels, platelets’ responsiveness to ADP or CaCl2 stayed at constant levels with
storage time.

In the liquid fraction of WB samples, Ca2+ levels remained similar throughout the storage period,
whereas glucose levels, mostly increased by ACD-A, decreased with storage time (Figure 4a,b).
Plasma pH stayed at 7.5 ~8.0 (Figure 4c).
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Figure 3. Flow-Cytometric (FCM) analysis of CD41- and CD62P-double-positive platelets in platelet
fractions that were prepared from fresh or stored WB samples and stimulated with 10 mM ADP or
0.1% CaCl2 for 15 min (n = 4). * p < 0.05 as compared with control platelets at the same time points.
No significant differences were observed in time-course changes.

Figure 4. Stable Ca2+ (a) and glucose levels (b) and pH (c) of fresh and stored WB samples.
Because stored WB samples contained ACD-A as an anticoagulant, CaCl2 was added to the samples for
PRF clot formation. Ca2+ levels were determined before and after the addition of CaCl2. Glucose levels
were determined in WB samples before the addition of CaCl2. * p < 0.05 as compared with the individual
control levels on day 1 (n = 8).
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3.2. Time-Dependent Changes in the Quality of The Resultant PRFM Samples

Storage time did not substantially affect the visual appearance, size, or serum retention of PRFMs
prepared from stored WB samples (Figure 5). However, fibrin fibers formed in these PRFMs became
somewhat thinner with time (Figure 6).

 

Figure 5. Visual appearance of platelet-rich fibrin–like matrixs (PRFMs) prepared from WB samples
stored for the indicated periods. WB samples were simultaneously collected from the same donor.
Similar PRFM samples were obtained from three other experiments.

 

Figure 6. Scanning electron microscopy (SEM) images of fibrin fibers formed in PRFMs prepared from
WB samples stored for the indicated periods. WB samples were simultaneously collected from the
same donor. Similar findings were obtained in three other experiments.
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PDGF-BB levels in the extracts of the resulting PRFM samples significantly decreased during the
initial 3 days but recovered to control levels thereafter (Figure 7).

Figure 7. Time-dependent changes in the concentration of PDGF-BB extracted from PRFM samples
that were prepared from stored WB samples and compressed to squeeze out PRFM exudates. * p < 0.05
as compared with fresh WB samples as controls (n = 8).

4. Discussion

The biochemical mechanisms underlying different phases of platelet activation, including
adhesion, shape change, the granule release reaction, and aggregation, have been well delineated [18].
To treat specific diseases, such as thrombocytopenia, functionally complete platelets are required.
However, in the PRFM used for regenerative therapy, platelets are only required to aggregate in
response to Ca2+ and/or thrombin, to release growth factors, and to support clot formation. In our
previous study [7], we demonstrated that short-term storage does not influence the minimally required
platelet functions or quality of the PRFM. The aim of this study was to investigate the possible expiry
limit for the storage of PRFM. In general [19], the storage of platelets for clinical use is limited to a
maximum of 5 days. Consequently, we did not extend the storage period to >7 days, and we assessed
the quality of PRFMs prepared from stored WB samples.

Both RBC and WBC counts tended to gradually, but not significantly, decrease with storage
time, whereas platelet numbers did not. Regarding the time-dependent changes in Ca2+, glucose,
and PDGF-BB levels, as previously demonstrated [7], PDGF-BB levels in PRFMs prepared from WB
samples stored for 1–3 days were significantly lower than those of fresh WB samples. Nonetheless, with
increasing storage time, PDGF-BB levels recovered to those of the freshly prepared PRFM. Only glucose
levels changed with time; they decreased with increasing storage time, and at 5 days and later, they
were significantly lower than those of the ACD-treated WB samples on day 1.

It is generally accepted that adequate oxygen supply is needed to increase platelet viability in
platelet concentrates because oxygen reduces their glucose consumption and lactate production [20,21].
It is known that even under the improved storage conditions, platelets gradually lose their function,
a phenomenon that is called the storage lesion [22]. Furthermore, it was recently demonstrated
that growth factors in PRP degrade in the course of storage at 22 ◦C [23]. Therefore, Bausset et al.
recommend injecting PRP within 3 h after preparation to avoid the loss of efficacy [24]. There is an
opposite viewpoint, that PRP for tissue regeneration can be stored for at least 5 days [25].

In the present study, gas-impermeable plastic tubes were used for WB preservation, so that
blood cell viability can be maintained mainly by glycolysis (as explained elsewhere [26,27]) of glucose
provided by the ACD-A solution [26,27] after depletion of remaining oxygen. In this case, even though
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platelets are not concentrated as highly as platelet concentrates for storage, it is possible that RBCs in
cooperation with platelets produce lactate and significantly decrease pH. On the other hand, plasma
pH of the stored WB samples remained constant at ~6.5 under our preservation conditions. As a result,
platelets could be preserved well, judging by the finding that the ability of the platelets—isolated
from 7-day-stored WB samples—to respond to Ca2+ and ADP challenges was mostly similar to that of
platelets obtained from the WB samples following short-term storage. A possible explanation for this
successful preservation may be suppression of cell metabolism by citrate-dependent Ca2+ chelation:
platelet activation is known to be prevented by citrate [28], whereas it is also possible that RBC activity
can be reduced through inhibition of Ca2+-mediated cellular functions [29] by Ca2+ chelation.

Because WBC-depleted transfusion is necessary to avoid WBC-mediated adverse reactions,
particularly in allogeneic blood transfusions [30], the lifespan of WBCs in vitro has not been
clearly described in the literature: approximate lifespans of circulating RBCs, platelets, neutrophils,
eosinophils, and B cells are reported to be 120, 10, 1–5, and 2–5 days and 4–7 weeks, respectively [31].
Accordingly, granulocytes (large components of WBCs) may have the shortest survival period in vitro.
In contrast, lymphocytes, which constitute the small components of WBCs, and RBCs may survive
longer than can other blood cell types in vitro. Consistent with these standard lifespans, our present
findings indicate that the percentage of large WBCs decreased with time. Although WBC counts did
not significantly decrease within 7 days, it cannot be ruled out that the automatic hematology analyzer,
which uses particle size differences for calculations, may have detected and counted WBCs that were
reduced in size, probably by apoptosis.

The thickness of fibrin fibers of PRFM samples gradually decreased with time, probably due
to degradation of coagulation factors, a reduction in their enzymatic activity, or a decline of platelet
functions. Therefore, it can be hypothesized that PRFMs composed of thinner fibrin fibers may be
easily susceptible to degradation and may release growth factors faster than do fresh WB samples.
Nevertheless, fibrin fibers observed in fibrin clots that were prepared from fresh or frozen platelet-poor
plasma by the addition of thrombin were considerably thinner, and their cross-link density was
considerably higher relative to stored WB samples [7]. In our preliminary study, with a limited
number of WB samples, the degradation assay involving a trypsin and EDTA solution failed to detect
significant differences in PRFMs prepared from long-term–stored and fresh WB samples (data not
shown). We believe that the PRFM prepared from WB samples stored long-term can be an alternative
option for regenerative therapy in clinical settings.

Although blood transfusion studies have established standard protocols for the storage of WB
samples [32,33], the time-dependent reduction in WBC counts may result in weakened bactericidal
effects [34]. In addition, the possibility that autolysis of WBCs can trigger degradation of specific
proteins, which in turn can influence PRFM formation, cannot be ruled out. Consequently, to validate
the clinical use of such a PRFM, its safety and efficacy should be assessed further in experimental
models based on relatively large animals.

5. Conclusions

The PRFM is conventionally prepared onsite; however, it would be convenient if this material
were prepared several days later. We demonstrated that a clinically applicable PRFM can be prepared
from WB samples that are stored for up to 7 days by the addition of appropriate amounts of Ca2+.
This method can make the treatment schedule more flexible and benefit both the patients and physicians
or dentists involved in regenerative therapy with the PRFM. Although the period of WB sample
storage may be further extended by improving several conditions, we would recommend using a fresh
autologous PRFM prepared onsite as the first choice and the PRFM prepared from stored autologous
WB samples as the second choice. To minimize the possible loss of efficacy and unidentified or
unpredictable risks, it would be better to utilize the stored autologous WB samples as soon as possible,
at least within a week in accordance with the national guidelines [6].
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